Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 3rd International Conference on High Energy Physics Rome,Italy.

Day 2 :

OMICS International High Energy Physics 2017 International Conference Keynote Speaker Bradley S Meyer photo
Biography:

Bradley S Meyer has completed his PhD from the University of Chicago and Postdoctoral studies at Lawrence Livermore National Laboratory. He has been a Professor at Clemson University since 1990.  His research focuses on nucleosynthesis, that is, formation of the chemical elements in the early universe, stars, and stellar explosions, and manifestations of nucleosynthesis in astronomy and cosmochemistry. He has published more than 100 papers in reputed journals.

Abstract:

The author wants to present an uncommon description of an energy transfer process in core-collapse supernovae: namely, a gravitational machine that increases Coulomb energy within nuclei via silicon burning. Excess of that Coulomb energy is returned weeks and months later by weak nuclear decays (EC and beta+). Those decays energize several observable quantities: gamma-ray lines, X-ray luminosity, free chemical energy and optical light curves. The delay of the energy return is essential for visibility of these activations. These secondary displays have rich literatures; but expressing them as observables of a supernova machine, whose action can be summarized as gravitational compression→Coulomb nuclear energy increase→release of excess of that Coulomb nuclear energy by electroweak decays→supernova displays, is novel.

Keynote Forum

Qiu He Peng

Nanjing University, China

Keynote: Implication of strong magnetic field near the galactic center (GC)

Time : 10:05-10:40

OMICS International High Energy Physics 2017 International Conference Keynote Speaker Qiu He Peng photo
Biography:

Qiuhe Peng is mainly engaged in nuclear astrophysics, particle astrophysics and Galactic Astronomy research. In the field of Nuclear Astrophysics, his research project involved a neutron star (pulsar), the supernova explosion mechanism and the thermonuclear reaction inside the star, the synthesis of heavy elements and interstellar radioactive element such as the origin of celestial 26Al. In addition, through his lectures, he establishes Nuclear Astrophysics research in China, He was invited by Peking University, by Tsinghua University (both in Beijing and in Taiwan) and by nuclear physics institutes in Beijing, Shanghai, Lanzhou to give lectures on Nuclear Astrophysics for many times. He has participated in the international academic conferences over 40 times and he visited more than 20 countries. In 1994, he visited eight institutes in USA to give lectures. He is the first Chinese Astrophysicist to visit NASA and to give a lecture on the topic, “Nuclear Synthesis of Interstellar 26Al”. In 2005, he visited USA twice and gave lectures in eight universities again. Inviting six astronomers of USA to give series lectures, he has hosted four consecutive terms summer school on gravitational wave astronomy. After the four summer school obvious effect, at least 20 young scholars in China in the field of gravitational wave astronomy specialized learning and research. 220 research papers by him have been published.

Abstract:

A key observation has been reported in 2013: an abnormally strong radial magnetic field near the GC is discovered. Firstly, we demonstrate that the radiations observed from the GC are hardly emitted by the gas of accretion disk which is prevented from approaching to the GC by the abnormally strong radial magnetic field and these radiations can't be emitted by the black hole model at the center. However, the dilemma of the black hole model at the GC be naturally solved in our model of super massive object with magnetic monopoles (MMs). Three predictions in our model are quantitatively in agreement with observations: 1. Plenty of positrons are produced from the direction of the GC with the rate is  or so. This prediction is quantitatively confirmed by observation (); 2. A strong radial magnetic field is generated by some magnetic monopoles condensed in the core region of the super massive object and the magnetic field strength at the surface of the object is about 20-100 Gauss at  ( is the Schwarzschild radius) or at . This prediction is quantitatively in agreement with the lower limit of the observed magnetic field ; 3. The surface temperature of the super-massive object in the galactic center is about 120K and the corresponding spectrum peak of the thermal radiation is at  Hz in the sub-mm wavelength regime. This is quantitatively basically consistent with the recent observation. The conclusions are: It could be an astronomical observational evidence of the existence of MMs and no black hole is at the GC. Besides, making use of both the estimations for the space flux of MMs and nucleon decay catalyzed by MMs (called the RC effect) to obtain the luminosity of celestial objects by the RC effect. In terms of the formula for this RC luminosity we are able to present a unified treatment for various kinds of core collapsed supernovae, SNII, SNIb, SNIc, SLSN and the production mechanism for γ ray burst, as well as the heat source of the Earth’s core, the energy source needed for the white dwarf interior. This unified model can also be used to reasonably explain the possible association of the shot γ ray burst detected by the Fermi γ ray Burst Monitoring Satellite (GBM) with the September 2015 LIGO gravitational wave event GW150914.

  • High Energy Nuclear Physics | Particle and Nuclear Physics | Atomic and Molecular Physics| Electromagnetism
Location: Olimpica 3+4
Speaker

Chair

Bradley S Meyer

Clemson University, USA

Speaker

Co-Chair

D A Howe

University of Colorado, USA

Session Introduction

Hervé Mohrbach

Université de Lorraine, France

Title: Fadeev-Jackiw quantization of non-autonomous singular systems
Biography:

Hervé Mohrbach is Professor of Physics at the University of Lorraine. He has published more than 50 papers in theoretical physics in reputed journals.

Abstract:

The quantization of constrained systems was first considered by Dirac who elaborated on a Hamiltonian approach with a categorization of constraints and the introduction of the Dirac brackets. More recently Faddeev and Jackiw have proposed an alternative approach based on the symplectic formalism and Darboux theorem which can often avoid many of the steps of Dirac method. Both approaches were developed for autonomous constrained systems only. Gitman and Tyutin, via notably the introduction of a conjugate momentum of time, could extend Dirac approach and brackets for the case of non-autonomous singular systems. In this presentation an extension of the Faddeev-Jackiw method in order to solve the problem of time dependent constraints will be considered. For that purpose a time parameter is introduced to treat the real time as a dynamically variable, which is accompanied by the emergence of a gauge symmetry. This one is fixed with the help of a supplementary variable that plays the role of a new conserved Hamiltonian. From it, we deduce a generalization of the Hamilton equations for non-autonomous systems that lead to the correct equations of motion. With this extension of the usual Hamiltonian formalism we can obtain the most general form of the Schrödinger equation, valid for singular non-autonomous systems as well. The method is exemplified by the quantization of the damped harmonic oscillator and applied to the relativistic point like particle in an external electromagnetic field. This system meets specific difficulties such as a null Hamiltonian and the presence of a gauge symmetry due to the arbitrary choice of the time parametrization. We will see that the Faddeev-Jackiw approach for non-autonomous systems can be straightforwardly applied to this case. The quantization method could be generalized to a particle moving in a curved space and more generally to the case of time invariant reparametrization systems.

Biography:

Vladimir G Plekhanov has graduated from Tartu State University in 1968, PhD (Physics and Mathematics), Doctor of Science (Physics and Mathematics). His main interest fields include: the origin of the mass (quantization of matter) as well as the experimental manifestation of the strong nuclear interaction in the spectroscopy of solids. He is author of 197 publications both in English and Russian. His main books: Isotope Effects in Solid State Physics (Academic Press, San Diego, 2001); Isotope - Based Quantum Information (Springer, Heidelberg, 2012); Isotope Effects: Physics and Applications (Palmarium Academic Press, Saarbrucken, Deutschland, 2014) (in Russian); Isotopes in Condensed Matter (Springer, Heidelberg, 2013); Isotope Effect - Macroscopical Manifestation of the Strong Interaction (Lambert Academic Publishing, Deutschland, 2017) (in Russian).

Abstract:

Up to present time the macroscopical manifestation of the strong nuclear interaction are limited by radioactivity and the release of nuclear energy. Our communication is devoted to the description of the significantly new mechanism the strong force manifestation. Activation of the strong interaction by adding of one neutron to the nucleus causes the global reconstruction of the macroscopic characteristics of solids. We have studied the low - temperature optical spectra of the LiH and LiD insulator crystals (figure 1) which differ by term of one neutron from each other. As demonstrated early, most low energy electron excitation in LiH crystals are large radius excitons. In experiments we used the samples with clean surface cleaving in the bath of helium cryostat with normal or superfluid liquid helium. The samples with such surface allow to perform measurements for 15 hours. Exciton luminescence is observed when LiH crystals are excited in the fundamental absorption. The spectrum of exciton photoluminescence of LiH crystals cleaved in superfluid helium consists of narrow phononless emission line and its broader phonon replicas which arise due to radiative annihilation of excitons with the production of one to five LO phonons. As an example, the figure 2 shows the low - temperature (T=2K) photoluminescence spectra of LiH and LiD crystals. Comparison the experimental results on the luminescence spectra in the crystals which differ by one neutron only is allowed to the next conclusions. The addition of one neutron (using LiD crystals instead LiH ones) is involved in the increase of exciton energy on 103 meV. At the addition of one neutron the energy of LO phonons are decreased to 36 meV, that is direct seen also from luminescence spectra. As far as the gravitation, electromagnetic and weak interactions are the same of both crystals, it only changes the strong interaction therefore a logical conclusion is made that the renormalization of the energy of electromagnetic excitations (excitons, phonons) is carried out by the strong nuclear interaction. The last conclusion opens new avenue in the investigations of the strong nuclear interaction (QCD) using by means the condensed matter alike traditional nuclear methods (including accelerating technique).

Biography:

D A Howe is a Research Advisor to the Time and Frequency Division of the National Institute of Standards and Technology (NIST) and Colorado University Physics Department, Boulder, CO. His expertise includes time-series analysis, automated accuracy evaluation of primary cesium standards, reduction of oscillator acceleration sensitivity, and precision spectral analysis. He worked with David Wineland from 1973 to 1987 doing advanced research on NIST’s primary cesium standard and compact hydrogen and ammonia standards. He developed and built the first operating compact hydrogen masers in 1979, led and implemented global high-accuracy satellite-based time-synchronization among national laboratories in the maintenance of Universal Coordinated Time (UTC).

Abstract:

Atomic clocks (or oscillators) form the basis of standard, everyday timekeeping. Separated, hi-accuracy clocks can maintain nanosecond-level autonomous synchronization for many days. The world’s best Cs time standards are atomic fountains that use convenient RF quantum transition at 9,192,631,770 Hz and reach total frequency uncertainties of 2.7 – 4×10-16 with many days of averaging time. A new class of optical atomic standards with quantum transitions having +1×10-15 uncertainty drives an optical frequency-comb divider (OFD), thus providing exceptional phase stability, or ultra-low phase noise (ULPN), at convenient RF frequencies. In terms of time, this means that a 1 ns time difference wouldn’t occur in a network of clocks for 15 days. I show how the combination of high atomic accuracy and low-phase noise coupled with reduced size, weight, and power usage pushes certain limits of physics to unlock a new paradigm – creating networks of separated oscillators that maintain extended phase coherence, or a virtual lock, with no means of synchronization whatsoever except at the start. This single property elevates their usage to a vast array of applications that extend far beyond everyday timekeeping. I show how accurate oscillators with low-phase noise dramatically improves: position, navigation, and timing; high-speed communications, private messaging and cryptology, and spectrum sharing. This talk outlines game-changing possibilities in these four areas to the degree that clock properties are sustained in application environments. I will show a summary of several ongoing US programs in which the commercial availability of such low-phase noise, atomic oscillators are now a real possibility.

Biography:

Ahmed M Hamed is a Visiting Assistant Professor at the Department of Physics and Astronomy, University of Mississippi. He was a Postdoctoral Research Associate in the Cyclotron Institute, and had concurrently been a Visiting Assistant Professor in the Physics Department, at Texas A&M University. He was involved in the experimental high-energy nuclear physics research in the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL).

Abstract:

World-wide efforts over the past half-century have produced a remarkably successful theoretical framework, the standard model (SM) describing matter and energy (only ~4% of the Universe) in a flat 4-dimensional spacetime, as built of certain constituents, interacting through specific forces according to general principles of symmetry, relativity, and quantum mechanics. The SM of particle physics predicts two phase transitions that are relevant for the evolution of the early universe; one occurs at temperatures of a few hundred GeV (electroweak symmetry breaking), and another is expected to occur at ~200 MeV (chiral symmetry breaking). The prediction for the latter phase to be created in a domain where complete analytical calculations are unobtainable increase the challenges at the theoretical level. Nevertheless, this situation provides an exciting opportunity for an experimentalist to lead the endeavor, hence the relativistic heavy-ion program, which was proposed in 1974. The relativistic heavy ion experiments are constructed to produce the quark gluon plasma (QGP), a proposed precursor phase to the big bang nucleosynthesis, after setting the stage for one of the most important signatures of the QGP, Jet Quenching, I'll discuss whether it can be considered as unequivocal evidence for such phase.

Michele Iacovacci

University of Naples Federico II, Italy

Title: Results from ARGO-YBJ
Biography:

Michele Iacovacci is an Associate Professor of Physics, teaching for students of Engineering and Physics faculties. His main interest is in Astroparticle and Particle Physics. He has more than 130 citable papers (published or arXiv).

Abstract:

The ARGO-YBJ experiment has operated at the Yangbajing cosmic ray (CR) laboratory (Tibet, PR China, 4300 m a.s.l., 606 g/cm2) from November 2007 until February 2013. The detector consisted of a single layer (6700 m2) of RPCs operating in streamer mode, with a full coverage approach (sensitive area equal to 93% of the geometric one). The digital readout of the signal (strip) provided a high spatial and temporal resolution in the shower front reconstruction for shower energy lower than a few hundred TeV. With an analog readout, in operation since December 2009 on 5800 m2, the experiment was able to measure higher energies and access the knee region of the CR spectrum. Major targets of the experiment were the gamma astronomy up to tens of TeV; the gamma-ray bursts physics; the measurement of the antiproton/proton ratio at the TeV energies; the physics of the sun and the heliosphere. CR physics, with special attention to anisotropy and composition around the knee of the spectrum. Here we report a summary of main scientific achievements.

Biography:

Marius Arghirescu has a Doctorate in Science and Engineering of Materials, from Politechnica University of Bucharest and he works as Patent Examiner at State Office for Inventions and Trademarks in Romania. He is a Scientist in Physics and Inventor. He has published three books and more than 25 papers as a single author in national and international reviews and has more than 30 patented invention. He is the author of a Cold Genesis Theory of Matter, published in the book: The Cold Genesis of Matter and Fields and in some additional papers.

Abstract:

The paper is based on a theory developed by author in the book: The Cold Genesis of Matter and Fields , which argues the cold genesis of elementary particles in a very strong magnetic field, of a magnetar or a gravistar, in accordance with a resulted quasi-crystalline model of quark and particle- resulted as Bose-Einstein condensate of N gammons, considered as pairs (e*+ - e*-) of quasi-electrons with diminished mass me*, charge e*and magnetic moment me*, whose etherono-quantonic vortex of the magnetic moment: G*m(r) = GA + GB , formed of sinergonic etherons (ms » 10-60 kg)- generating the magnetic potential A and of quantons (mh = h/c2 = 7.37x10-51 kg) generating vortex-tubes that materializes the field lines of magnetic induction B, explains the nuclear force as an attraction of the nucleon’s impenetrable volume in the field of 2N- superposed vortices G*m(r) of another nucleon. The theory, which predicted the existence of a preon z0» 34 me, experimentally evidenced in 2015 but considered as X- boson of a fifth force, of leptons to quark binding, argues a preonic model of quarks whose stability was explained by a quasi-crystalline model of z0-preon and of the quark core. In the proposed paper, based on a quasi-crystalline preonic quark model, with hexagonal symmetry, there are identified as possible dark matter constituents some bosons of quantum vacuum with null charge, (quasi)null magnetic moment and with stability comparable to those of particles from the cosmic radiation, resulted by the kernel’s crystallinity with hexagonal or triangular symmetry, with masses corresponding to the relations: MZ = åK(n1×zp + n2×z2); MZ’ = åK(n1×6z0+n2×3z0), with: zp = 7z0; z2 = 4z0; K = 1¸7; n1 = 1¸4;  n2£ n1. It results also some predictions for multi-quark particles of cold genesis such as: 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.

Biography:

Xin Chen has obtained his PhD from University of Wisconsin-Madison. He is currently working as an Assistant Professor at Tsinghua University, China.

Abstract:

Searching for new physics signatures in the Higgs sector is an important goal at current and future colliders. It is found that in an effective field theory, the process of pp®VH*®VVV is very sensitive to the anomalous dim-6 couplings of a heavy Higgs, for which the LHC can potentially give some hints. With the high luminosity data from LHC, the CP property of the light Higgs at 125 GeV can be studied in its ditau decay channel. The CP mixing angle measurement can be further refined at future e+e- colliders, which may open the door to new physics.

Biography:

Valentina Markova has graduated from Sofia Technical University, specialty in Radio Equipment regular training and also from St. Kliment Ohridski University of Sofia, specialty in Mathematics and Informatics as a distance learning. She has completed her PhD from Scientific Institute of Ministry of Military Defense in 1990. The topic was on algebraic codes, which correct in real time long error packets. She has Postdoctoral studies from Bulgarian Academy of Sciences, where she works until today as a Leading Researcher. She has published more than 15 papers on algebraic and technical topics.

Abstract:

The report develops a new type positive feedback that converts each classical amplifier into a generator. The feedback is a tube of nested one in the other accelerated longitudinal vortices. They suck in transverse direction free cross vortices from the environment. They suck in cross vortices also from the nearest outside adjacent cylinders to the inner cylinders and add some mass and energy to the tube. In this way longitudinal vortices forming the tube accelerate not only at a time and in a direction (from the periphery to the center) and become a kind of generator. The positive feedback turns from passive to active. The theoretical basis of the proposed pipe of accelerating longitudinal vortices is described in previous articles. It consists of extending to Maxwell's main axiom (div rot E=0) to a more universal axiom (div rot E≠0). This means that it replaces even motion (constant velocity) of vector E in a closed loop with uneven motion (variable velocity) of vector E in open loop or in open vortex. The base of practical performance is the well-known amplifier of which we construct an active positive feedback. This allows to construct an electric motor that consumes external energy only at the beginning, and then it consumes from amplifier with active positive feedback.

Adriana Palffy

Max Planck Institute for Nuclear Physics, Germany

Title: Laser-nucleus reactions at the upcoming extreme light infrastructure
Biography:

Adriana Palffy has studied Physics in Bucharest, Romania, and received her PhD in Theoretical Physics at the Justus Liebig University in Giessen, Germany. Since 2011 she is the Leading Scientist of the group Nuclear and Atomic Quantum Dynamics at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. She is an expert in the field of Laser-Matter Interaction, with more than 40 papers published in peer-reviewed journals.

Abstract:

Recent experimental developments in laser physics promise to open the new field of laser-induced nuclear reactions in a so-far unexplored domain. Efforts are under way to generate a multi-MeV laser beam at the Nuclear Physics Pillar of the Extreme Light Infrastructure (ELI). Bound by the strong force, nuclei typically do not show any response even to extremely intense optical fields, which can only induce nuclear reactions indirectly, as they are very efficient in transferring kinetic energy to charged particles. Laser-driven nuclear accelerators using intense optical fields are thus one candidate for nuclear physics experiments with strong external fields. In this context, we would like to report on our study of laser-driven recollisions of alpha particles immediately following alpha decay. With the new laser beam envisaged at ELI that would attain photon energies comparable to typical nuclear excitation energies, strong nuclear excitation is rendered possible. We could show that laser-nucleus reactions with such a beam leads to multiple photon absorption and may produce compound nuclei in the so-far unexplored regime of several hundred MeV excitation energies. We have investigated semi quantitatively the competition between photon absorption, photon-induced nucleon emission, fission and neutron evaporation. With neutron evaporation becoming dominant before the excitation is saturated, proton-rich nuclei far off the line of stability are produced. Stronger excitation in the sudden regime where equilibration cannot compensate photon absorption may offer for the first time the possibility to study the transition from a bound system of strongly correlated nucleons to single independent particles.

Alison M Brennan

Cavendish Laboratory - University of Cambridge, UK

Title: The relativistic hydrogen atom with magnetic monopole on the nucleus
Biography:

Alison M Brennan is a PhD student in the Astrophysics group in the Department of Physics at the University of Cambridge. She had a previous career as a Software Engineer in the electronics industry.

Abstract:

The addition of a magnetic monopole to the nucleus of hydrogen atom was first considered by Malkus in 1951. More recently Lynden-Bell and Nouri-Zonoz in 1998, have determined the energy levels and spectra of the Schrodinger hydrogen atom with magnetic monopole on the nucleus. They have also found the energy levels of the Dirac hydrogen atom with magnetic monopole on the nucleus. The work of Lynden-Bell and Nouri-Zonoz is extended by finding the angular part of the solution of Pauli equation for the hydrogen atom with monopole on the nucleus. These two-spinor solutions may be named the generalized spherical spinors. The angular part of the solution of the Dirac hydrogen atom with magnetic monopole is then constructed from the generalized spherical spinors from which complete solutions of the relativistic hydrogen atom with magnetic monopole are then obtained.